
VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

1 
 

UNIT-I 

Introduction of DOT NET 

• Dot NET is developed by Microsoft Company and announced about it in 

July 2000 at Orlando, Florida. 

• Dot NET comes with different versions of Microsoft Visual Studio as  

2003,2005,2008,2010,2012,2019 etc. 

• Dot NET is basically invented  for next generation platform for Windows 

and Internet software development. 

• Dot NET is not a language but is a software technology to build computer 

applications. 

• Dot NET is a service provider that requires to develop any type of 

application. 

• Dot NET support multiple language integrity. It means we can use more 

than 30 programming languages under Dot NET such as VB.NET, 

C#.NET, J#.NET, F#.NET etc. 

• Applications developed under Dot NET  are partial platform independent. 

It means Dot NET application can execute on any architecture of 

hardware machine but necessarily required Microsoft Operating System 

XP or later versions on which Dot NET framework is installed. 

• Dot NET applications executes faster because of base class libraries 

which are available in Dot NET framework. 

• Using dot net we can developed following four type of applications. 

1. Console Application  

2. Windows Application 

3. Internet Application 

4. Mobile Applications 

Dot NET Framework Features: 

Dot NET framework is just like an engine of a train. Any application which are 

developed, debug, compiled, executes and deployed are possible only due to 

presence of Dot NET Framework.  

First of all Dot NET applications that developed using any Dot NET language 

like VB.NET compiled into MSIL code (Microsoft Intermediate language code) 

then such MSIL code transferred to Dot NET Framework. Dot NET Framework 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

2 
 

perform many operations and finally converts demanded MSIL code into Native 

code (machine code) and handover to Operating System to executes on 

machine. 

Dot NET framework is like a mini operating system for Dot NET applications. 

Traditional languages v/s Dot NET languages: 

Applications developed under traditional programming languages like C, C++ 

are platform dependent because their compiler converts source code into 

machine code for targeted machine. On different type of machine application 

never executes but applications developed under Dot NET will be executes on 

all type of machine due to Dot NET Framework.    

 

  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

3 
 

Dot NET Framework Architecture: 

Whole architecture of Dot NET Framework is divided into three layers. 

 

(Layer-1) 

Dot NET Applications Interface 

Web Forms  Windows Form 
 

(Layer-2) 

Dot NET Framework Base Classes 

ADO.NET XML Threading IO 

Net Security Diagnostics Etc. 
 

(Layer-3) 

Common Language Runtime 

Memory 

Management 

Common Type System Lifecycle Monitoring 

 

 

Layer-1: This layer accept MSIL code of Dot NET applications from out 

source that were developed using Dot NET tools they may be web forms or 

windows form. This layer provide interface for such application. 

Layer-2: This layer is consist of  thousands of base classes. Dot NET 

applications that uses pre define classes will be proved by base class library 

before execution. 

Layer-3: This layer converts MSIL code into Native code (machine code) using 

JIT (Just in time) compiler. It also performs all the task that done by any 

operating system for dot net application. Due to this layer, it is possible of 

multiple language integrity. For all Dot Net language, this layer provides a 

common run time.   

  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

4 
 

CLR (Common Language Runtime) 

A runtime is an environment in which programs are executed. The CLR is 

therefore the environment in which we run our Dot NET applications that have 

been compiled to a common language, namely MSIL, often referred to simply 

as IL. CLR can be represented as. 

Common Type System 

(Data Types, etc.) 

IL to native code 

compilers 

(JIT Compiler) 

Execution Support Security 

Garbage collection, stack walk, code manager 

Class loader and memory layout 

  

The CLR is responsible for managing the execution of code compiled for .NET 

platform. Code requiring the CLR at runtime in order to execute is referred to as 

“managed code”. Compilers that target the .NET platform generate managed 

code that relies on a core set of services provided by the CLR. 

Common Type System 

The most important features Multiple language integrity of dot NET is possible 

due to Common type system of CLR. In which all commonly used data types, 

even base types such as longs and Booleans are actually implemented as 

objects. Since all languages are using the same library of types, calling one 

language from another does not require type conversion. 

This result in the need for some readjustment, particularly for Visual Basic 

developers. For Example, what we called an Integer in VB6 is now known as a 

Short in Visual Basic.NET.  

MSIL 

The full form of MSIL is “Microsoft Intermediate Language”. This is 16 bits 

code designed by Microsoft to hide actual source code of program. This code 

some time also called IL code. Compilers of all Dot NET languages converts 

their source code into MSIL code. This codes are transfer machine to machine. 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

5 
 

When Dot NET application executes then MSIL codes are processed by Dot 

NET framework and converts into Native code. When MSIL code convert into 

machine code at targeted machine then such machine code called Native code.   

Assemblies and class libraries 

An assembly is the primary unit of deployment for managed code. An assembly 

is composed of a manifest and one or more modules. The manifest can be stored 

in a separate file or in one of the modules. The manifest contains information 

about the identity of the assembly, a declarative security request, a list of other 

assemblies it depends on and a list of all exposed types and resources. 

 

The identity information stored in the manifest includes its textual name and 

version number. If the assembly is public, the manifest will also contain the 

assembly’s public key. The public key is used to guarantee uniqueness and may 

also be used to identify the source of the assembly. 

The assembly is responsible for declaring the security it requires. Requests for 

permission fall into one of three categories: required, optional and denied. The 

identity information may be used as evidence for determining whether or not to 

approve the security requests.  

The manifest contain a list of other assemblies it depends on and all types and 

resources exposed by the assembly. The manifest also contains a list of other 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

6 
 

assemblies depends on. The CLR uses this information to locate an appropriate 

version of the required assemblies at runtime.  The list of dependencies also 

includes the exact version number of each assembly at the time the assembly 

was created. 

Module: A module is either a DLL or an EXE. It contain IL, associated 

metadata and may optionally contain assembly’s manifest. 

Type: A type is a template used to describe the encapsulation of data and 

associated set of behaviors. A type has properties, methods and fields. 

Class Libraries:  

Middle layer of Dot NET Framework is consist of thousands of base classes/ 

class libraries. Dot NET applications have a number of object declaration of 

predefined classes. All these classes are defined in the base class libraries of dot 

Net Framework. When application loaded then all required base classes will 

loaded into memory from this class libraries. All classes are organized using 

Namespaces. One Namespace contains one or more namespaces and classes. 

They are uses as 

Ex: 

Namespace- System.Data 

Classes- DataSet, DataTable, DataColumn etc. 

Introduction to Visual Studio 

Visual Studio is a complete package designed by Microsoft to develop, debug, 

execute, build and deploy Dot NET applications. Initially Microsoft designed 

Visual Studio 6.0. Later it is modified, reconfigured and launched called 

Microsoft Visual Studio.NET.  It comes with many versions such as Microsoft 

Visual Studio 2003, MSVS2005, MSVS2008, MSVS2010, MSVS2012 etc. We 

can use any one of them. 

Visual Studio provides IDE (Integrated Development Environment) to develop 

software. It comes with compilers of many languages such as VB.NET, 

C#.NET, J#.NET and F#.NET. We can choose any languages for development 

of new software. 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

7 
 

After choosing language we can choose IDE for any type of project like web, 

windows, console etc. 

 

Project basics & Type of project in .NET:  

 In Visual Studio every new development is considered as a project. Because 

one project is consist using number of files such as Form designer file, code file 

and other supporting files. 

In Dot NET we can develop different type of projects. 

1. Console based 

2. Windows based 

3. Web based 

Console based: In such project user interfaces are text based (CUI- Character 

User Interface). User communicates with application using only keyboard and 

monitor. To execute application needs supports of operating system and Dot 

NET Framework on every machine. 

Window based:  In such project user interfaces are graphical based (GUI- 

Graphical User Interface). User communicates with application using mouse, 

keyboard, monitor and other pointer devices. To execute application needs 

supports of operating system and Dot NET Framework on every machine. 

WEB based:  In such project user interfaces are internet based. User need to 

work with application it is necessarily required web browser and web 

server(IIS). Web application executes at web server by Dot NET Framework 

and executed outputs are in the form of HTML, CSS and JavaScript. These 

codes are respondent to requested web browser(Internet Explorer). Web 

browser executes HTML, CSS and JavaScript code and provides GUI to the 

user.  

IDE of VB.NET 

VB.NET is one programming language of Dot NET. Using VB.NET we can 

write programming code for any type of applications like console, windows or 

web based. IDE means Integrated Development Environment in which all the 

tools which are available at one place necessary required to develop any 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

8 
 

application like design forms using controls, writing code, adding new forms, 

switching forms, changing default properties, debug, executed, build application 

and deploy.  

To open IDE of VB.NET we have to follow these steps. 

Start→Microsoft Visual Studio 2005 or later versions→Choose VB.NET 

Language→Choose Windows Application→OK. We Get IDE of VB.NET that 

consist using following tools- 

Menubar, Toolbar, Solution Explorer, Toolbox, Property windows, Form 

designer, Output Windows, Object browser and others. 

Block Diagram of VB.NET: The default place for all tools are situated as follow-  

Menubar 

Toolbar 

 

 

 

  Toolbox 

 

 

Form Designer 

 
 

Output Windows 

 

Solution Explorer 

 

 

Property Window 

 

 

 

1. Menubar 

It is situated at the top of VB.NET IDE. This bar contains all the 

commands in menu form that requires to develop an application. For 

Example- File, Edit, View, Debug etc. Using menubar application can be 

saved, open, close, cut, copy, paste, search, execute, build, add and 

remove different tools.  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

9 
 

2. Toolbar 

This bar situated at the top of VB.NET IDE and just below the menubar. 

It contains all the recent usable commands in iconic form.  

3. Solution Explorer 

It is situated at the right side of VB.NET IDE. It is a small window that 

shows all items in file form that were added in to current working project. 

Using this window we can open form designer, code behind, open any 

form. We can set start up form and build application in executable format. 

4. Toolbox 

It is situated at the left side of VB.NET IDE. It is a small window that 

contain all the controls in iconic forms which are used to design any 

window form such as Label, Textbox, Button, Checkbox, RadioButton, 

Calendar control, dialog boxes and many mores. 

5. Property windows 

It is a small window that situated at right side and just below the solution 

explorer of VB.NET IDE. When we select any controls on form or item 

then it shows their properties along with default values. We can set or 

change properties of any selected controls using this window. For 

example- background, font, for color etc. 

6. Form designer 

When we add a new form in our project then we can show that form in 

the middle part of VB.NET IDE. Form designer of any form has two 

sections. Form design and code behind. Form design is a window that is 

design using controls of toolbox and to write code for form design we use 

code behind window in which we can write code in VB.NET language. 

7. Output Windows 

By default this window appears when we execute application. This 

window shows all the processing activities at the time of execution. We 

can use this window to shows any output if required. 

8. Object browser. 

By default this window is not available in VB.NET IDE. To add this 

Window we can use toolbar or Menubar( View→Object browser). This 

window shows all the base classes which are available in Dot NET 

Framework. 

 

Working process project in VB.NET 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

10 
 

1. Open VB.NET. (start→MS Visual Studio 2005 or any→Choose VB 

language→choose console / window application→select folder using 

browser→give the name of project→OK). We get default one form (for 

window application) or one module code window (for console 

application). 

2. Design form using controls resides in toolbox and write VB code in code 

behind. For console application write VB code in module. 

3. We can add one or more form  / modules from solution explorer. 

4. To execute any form / module select project name in solution explorer 

then right click and select properties. When we open properties then we 

get start up object. Choose any required form / module. 

5. To execute form / module press F5 key or click arrow button of toolbar. 

  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

11 
 

UNIT-II 

The VB.NET language: 

Dot NET supports a number of programming languages, VB.NET is one of 

them.  

The main features of VB.NET languages are- 

• VB.NET is Object Oriented Programming  language. 

• Code of VB.NET is not case sensitive. 

• Every line of code is terminated by new line. 

• Syntax of VB.NET are very simple to use. 

• Compiler of VB.NET converts source code into MSIL code. 

• VB.NET programs are executed by Dot NET Framework. 

Variables 

A place holder of data is called variable. It is represented by a name. 

Ex: area, circum, x, y  

Declaring Variables 

By default in VB.NET it is necessary to declare variable name before using that 

one. For this Dim keyword is used as a prefix with variable name. 

Ex:  

Dim area 

Dim x 

 

Data Types of variable: 

We can assign any type of data to variable. 

Ex:  

Dim area 

area=3.44   'number 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

12 
 

area="very large"  'string 

When variables are declared with data type then we can not assign another type 

of data. 

Variable with data type is declared as 

 Dim var1 As DataType 

Ex: Dim area As Single 

 area=3.44   'No Error 

 area="very large"  'Error because it is string 

VB.NET provides a list of data types. Some of them are following-   

Type  Storage Size   Example   Default Value

  

Byte  1 Byte (unsigned)  Dim count as Byte  0 

Short  2 Bytes   Dim count as Short 0 

Integer 4 Bytes   Dim count as Integer 0 

Long  8 Bytes   Dim count as Long  0 

Decimal 16Bytes   Dim count as Decimal 0 

Single  4 Bytes   Dim rates as Single 0 

Double 8 Bytes   Dim rates as Double 0 

Char  2 Byte    Dim ch as char  Binary 0 

String  -    Dim name as String Nothing 

Date  8 Byte    Dim adm_date as Date  -- 

Boolean 2 Bytes (True/False) Dim flag as Boolean False 

Object 4 Bytes   Dim tx as Object  Nothing 

Type conversions 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

13 
 

We can change type of variable in any expression using following type 

conversions.  

CByte(Expression)  Convert any value in expression to Byte 

CShort(Expression) Convert any value in expression to Short 

CInt(Expression)  Convert any value in expression to Integer 

CLng(Expression)  Convert any value in expression to Long 

CDec(Expression)  Convert any value in expression to Decimal 

CSng(Expression)  Convert any value in expression to Single 

CDbl(Expression)  Convert any value in expression to Double 

CChar(Expression) Convert any value in expression to char 

CStr(Expression)  Convert any value in expression to String 

Cdate(Expression)  Convert any value in expression to date 

CBool(Expression)  Convert any value in expression to Boolean 

CObj(Expression)  Convert any value in expression to Object 

Example: 

Dim i as Integer, Dim j as Integer 

Dim dev as Double 

Dev=CDbl(i) / j 

User Defined Types 

We can define own data types on using creating Structure. 

Ex: Public Structure Employee 

Public name as String 

Public id as Integer 

End Structure 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

14 
 

This creates a new datatype. 

Declaration  : dim emp1 as Employee 

Access : emp1.name=”Lokesh Rathore” 

Forcing variables declaration 

We can force variable declaring before using them in code editor by adding 

following syntax at the top of code editor. 

 Option Explicit On 

 'area=3.44  It gives error because variable area is not declared 

 Dim area as single 

 area=3.44  ' It is correct 

By default in VB.NET it is necessary to declare variable before using them. But 

if we want to use variable without declaration then we have to disable forcing 

variable declaration using following syntax 

 Option Explicit Off 

Write this syntax at the top of code editor, after that compiler does not force to 

declare variable before using them. 

Ex:  area=3.44 

If following syntax is also written at the top of code editor then compiler will 

force to declare variable along with data types. 

 Option Strict On 

 Option Explicit On 

 Dim area as single 

 area=3.44 

 Dim cirum   'error because declared without data type 

By default Option Strict Off 

Scope and Lifetime of variable 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

15 
 

Scope tells which methods or module or class can use the value stored in a 

variable where as Lifetime of Variable tells how long a variable exit. In 

VB.NET variables are declared inside the methods and out side the methods 

within module or class. 

Inside the method: Scope of the variable is only within that method where it is 

declared and life time of variable is until method is loaded into memory. 

Outside the method: Scope of the variable is within all methods of module / 

class where it is declared and life time of variable is until module or class is 

loaded into memory.  

Ex: 

Module module1 

 Dim a as Integer 

 Sub Main() 

  Dim b as Integer 

  a=10   

b=20 

  Console.Writeline(a) 

  Console.Writeline(b) 

  Show()    

 End Sub 

 Sub Show() 

  Console.Writeline(a) 

  ' Console.Writeline(b) not accessible 

 End Sub 

End Module 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

16 
 

 In this example variable a is declared outside all the methods therefore it is 

accessible to all method of current module where as variable b is declared inside 

the method main therefore it is accessible to only inside main method. 

Constants 

A value that never changed during the program execution called constant. All 

the values are called literal constant. If we want to make variable constant then 

use const keyword. 

Syntax: const Const_name As Type=Value 

Ex:   const PI As Single=3.14 

We can use 3.14 constant using PI in any expression. If we make any changes in 

PI after declaration then compiler returns an error. 

  PI=3.44  'error 

Variables and constant are uses in program as following 

Option Strict On   ' enable type checking 

Option Explicit On   ' enable variable declaration 

Module Module1 

    Sub main() 

        Dim r As Single 

        Dim a, c As Double 

        Const pi As Single = 22 / 7 

        Console.WriteLine("Input radius of circle:") 

        r = CSng(Console.ReadLine()) 

        a = pi * r * r 

        c = 2 * pi * r 

        Console.WriteLine("Area={0},Circumference={1}", a, c) 

        Console.Read() 

    End Sub 

End Module 

Output: 

 

Operators of VB.NET 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

17 
 

Arithmetic Relational Logical 

+ (addition) <  (Less than) AND 

- (subtraction) <=(Less than or equal)) OR 

* (Multipcation) >(Greater than) NOT 

/ (Division) >=(Greater than or equal)  

\ (Division) = (equality)  

MOD (Remainder) <>(Not Equal)  

Arrays 

Collection of same data types called array. Variable can store only one data at a 

time but using array we can store any number of same type of data. Data in 

array are stores in continuous order and all represented by the same name. Data 

of the array are access using index vale (0,1,2, …..). 

Types of array  

In VB.NET array can be declared as following types 

1. One Dimensional array 

2. Two Dimensional array 

3. Multi Dimensional array 

4. Dynamic array 

One Dimensional array 

When a number of data are stores in one row then it is called one dimensional 

array. In VB.NET it is declared as following 

 Dim arr-name(size) As DataType 

Ex:  Dim marks(5) As Integer 

We can assign 6 integer values to marks array from index number 0 to5. 

Accessing array data as following- 

 Lower Bound = 0  and  Upper Bound = Size 

 marks(0)=44  

 marks(1)=54 

 marks(2)=64 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

18 
 

 marks(3)=34 

 marks(4)=24 

 marks(5)=74 

We can use loop from 0 to Size to access array data. 

Program for one dimensional array 

Module Module1 

    Sub main() 

        Dim arr(5) As Integer 

        Dim i As Integer 

        Console.WriteLine("Input 5 Numbers:") 

        arr(0) = 0  ' for sum of numbers 

        For i = 1 To 5 

            arr(i) = CInt(Console.ReadLine()) 

            arr(0) += arr(i) 

        Next 

 

        Console.WriteLine("First is sum of all") 

        For i = 0 To 5 

            Console.WriteLine(arr(i)) 

        Next 

 

        Console.Read() 

 

    End Sub 

End Module 

 

Output: 
 

 
 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

19 
 

Two Dimensional array 

When a number of data are stores in  tabular or matrix form (Row x Column) 

then it is called two dimensional array. In VB.NET it is declared as following 

 Dim arr(Rows, Columns) As DataType 

Ex:  Dim table(2,2) As Integer 

 table(1,2) = 10  'access  second row, third column data 

Program for two dimensional array 

Module Module1 

    Sub Main() 

        Dim m(2, 3) As Integer                                   '3x4 

        Dim i, j As Integer 

        'Read matrix 

        For i = 0 To 2 

            Console.WriteLine("Input 4 data row wise") 

            For j = 0 To 3 

                m(i, j) = CInt(Console.ReadLine()) 

            Next 

        Next 

 

        'print input matrix 

        For i = 0 To 2 

            Console.WriteLine("") 

            For j = 0 To 3 

                Console.Write(m(i, j) & "  ") 

            Next 

        Next     

 

        Console.Read() 

    End Sub 

End Module 

 

Output: 
 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

20 
 

 
 

Multi Dimensional array 

When a number of data are stores in  three or more dimensions then it is called 

multi dimensional array. In VB.NET it is declared as following 

 Ex:  Dim cube(3,3,3) As Integer 

Dynamic array 

When array is declared with size then we can never resize array during runtime. 

But we can create array at run time as our need of size using Redim and 

preserved  keyword. Redim keyword is used set size at runtime and preserved 

keyword used to resized array size after first use. They are declared as 

following. 

Syntax   Dim darr() As DataType 

   Redim darr(size) 

   ------------ 

   Redim Preserved darr(exponded-size) 

Program for dynamic array 

Module Module1 

    Sub main() 

        Dim darr() As Integer 

        Console.WriteLine("Input maximum limit of data:") 

        Dim n As Integer = CInt(Console.ReadLine()) 

        ReDim darr(n) 

 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

21 
 

        Dim i As Integer 

        For i = 1 To n 

            Console.WriteLine("Input data:") 

            darr(i) = CInt(Console.ReadLine()) 

        Next 

 

        ' To extend dynamic array with old data 

        Console.WriteLine("Input extention value of array:") 

        Dim m As Integer = CInt(Console.ReadLine()) 

        ReDim Preserve darr(n + m) 

        For i = n + 1 To n + m 

            Console.WriteLine("Input data:") 

            darr(i) = CInt(Console.ReadLine()) 

        Next 

        'print all data of dynamic array 

        For i = 1 To n + m 

            Console.WriteLine(darr(i)) 

        Next 

        Console.Read() 

 

    End Sub 

End Module 

 

Output: 
 

 
 

 

Control array & Collection 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

22 
 

Control array means group of same type controls and having only one event 

handler function.  

Ex: When we need 12 command buttons in our program then in place of writing 

12 subroutines to handle click event we simply make control array and use only 

one event handler.  

In Visual Basic 6.0 to make control array give same name for all controls but 

this is not possible in VB.NET because concept of control array does not exist 

that means to handle control array, there is no inbuilt functionality. So 

programmer own self create something very like control array in code. The 

main feature of control array is that all the controls in it share the same event 

handler, and so we can use the AddHandler method to assign the same event 

handler to multiple controls. 

Collection: Collections means an object that contain a group of more then one 

objects and all belongs to only one class, such group of object is called 

collection. 

Procedures (Methods) 

A block of code that can be called by another block then such block called 

procedures. 

In VB.NET Procedures are following types. 

1. Subroutines 

2. Functions 

3. Properties 

Subroutines 

A block of codes that never return any value after to the calling procedure called 

subroutine. 

In VB.NET subroutine is defined using sub  keyword as- 

 Sub Subroutine-name() 

  Codes 

 End Sub 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

23 
 

Example: 

 Sub Main() 

  show  'calling subroutine  

 End Sub 

 ' Subroutine 

 Sub show() 

  Console.Writeline("Subroutine Called") 

 End Sub 

Output: Subroutine Called 

Here Main() is a subroutine that calling another subroutine Show() 

Function & Returning values from function 

A block of codes that definitely returns only one value to the calling procedure 

called function. Return keyword is used to return value. 

In VB.NET function is defined using Function  keyword and value is return 

using Return keyword as- 

 Function Function-name() As Function-Type 

  Codes 

 End Function 

Example: 

 Sub Main() 

  Dim x as Integer 

  x=Fun()  'calling Function  

  Console.Writeline(x) 

 End Sub 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

24 
 

 ' Function 

 Function Fun() As Integer 

  Dim a as Integer 

  a=10  

Return a  

 End Function 

Output: 10 

Here Main() is a subroutine that calling Function Fun() and getting returning 

value.  

 

  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

25 
 

Passing Variables & Number of arguments 

We can pass any number of values to the subroutine and function directly or 

using variables.  Passing values are called arguments. Arguments are passed to 

the subroutine or function by using following two techniques. 

1. Call by values 

2. Call by reference 

1. Call by value (ByVal): When passing arguments are received by 

subroutine / function using ByVal keyword then there will be no change 

in actual argument if we made in formal argument inside subroutine / 

functions.  

2. Call by reference (ByRef): When passing arguments are received by 

subroutine / function using ByRef keyword then there will be also change 

in actual argument if we made in formal argument inside subroutine / 

functions.  

For Example- 

Module Module11 

 

    Sub LG(ByVal a As Integer, ByRef b As Single) 

        a = 10 

        b = 22.5 

    End Sub 

 

    Sub main() 

        Dim x As Integer 

        Dim y As Single 

        x = 20 

        y = 11.5 

        Console.WriteLine("Before calling procedure: x=" & x & " y=" & y) 

 

        LG(x, y) 'Calling Subroutine by passing varibles  

 

        Console.WriteLine("After calling procedure: x=" & x & " y=" & y) 

 

        Console.Read() 

    End Sub 

End Module 

Output: 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

26 
 

 

 
 

In this example, x and y are two variables of main() subroutine. They are passed 

to another subroutine LG(). It specifies two formal arguments, a with Byval and 

b with Byref. Subroutine LG() changed value of a and b. We observe that value 

of x changed but value of y does not change.   

Optional arguments 

When subroutine / function is defined with a fixed number of arguments with 

some data type then it is necessary that we have pass equal number of 

arguments and same data type. 

For example, if any subroutine / function is defined with two arguments of 

integer type then we must be passed exactly two arguments of integers.  

Some times we want to pass less number of arguments to the subroutine / 

function then it is possible using Optional keyword. We define arguments with 

optional keyword from right most argument towards left.   

Example: 

Module Module1 

    Function UseOpt(ByVal a As Integer, Optional ByVal b As Integer = 0,  

Optional ByVal c As Integer = 0) As 

Integer 

           Return a + b + c 

    End Function 

 

    Sub main() 

        Dim r As Integer 

        r = UseOpt(10, 20, 30) 'Pass 3 values 

        Console.WriteLine(r) 

 

        r = UseOpt(10, 20)   'Pass 2 values 

        Console.WriteLine(r) 

 

        r = UseOpt(10)   'Pass 1 values 

        Console.WriteLine(r) 

        Console.Read() 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

27 
 

    End Sub 

End Module 

 

Output: 

 

 
 

In this example, we define UseOpt() function with three arguments. Two 

arguments are define with optional keyword with default values. When we call 

this function with less number of arguments then function uses their default 

value. 

 

Control flow statement:  

By default In VB.NET, flow of control moves from top to bottom line. There 

are following statements that can transfer flow of control anywhere in the 

program. 

1. Conditional control statement 

2. Looping control statement 

Conditional control statement: 

If we have more than one set of codes and we want to execute any one set of 

codes by given condition then we can use following conditional control 

statements. 

1. If – Else - End If 

2. Select – Case – End Select   

If-Else-End If statement 

Condition is given with If statement. When it is true then code of If block will 

be execute otherwise code of Else block. We can skip Else Block.  

 

Common Syntax for IF-Else-End If 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

28 
 

If condition Then 

[statements] 

Else If condition Then 

[statements] 

- 

- 

Else 

[statements] 

End If  

This syntax can be used in following manner. 

1. If we want to execute only one set of statement conditionally 

 Example:        If n < 0 Then  n = -n 

 

2. If we want to execute one or more statements conditionally 

 Example: 

  If n < 0 Then 

               n = -n 

End If 

3. If there are two set of statements and want to execute any one of them 

conditionally. 

 Example: 

  If n Mod 2 = 0 Then 

              Console.WriteLine("{0} is Even number", n) 

          Else 

              Console.WriteLine("{0} is Odd number", n) 

          End If 

 

4. If there are a many set of statements and want to execute any one of them. 

 Example:  

        If p >= 60 Then 

            div = "First" 

        ElseIf p >= 45 Then 

            div = "Second" 

        ElseIf p >= 33 Then 

            div = "Third" 

        Else 

            div = "Fail" 

        End If 

 

5. Nested If- Else 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

29 
 

Examples: 

If a > b Then 

            If a > c Then 

                Console.WriteLine("large:"&a) 

            Else 

                Console.WriteLine(("large:"&c) 

            End If 

 Else 

            If b > c Then 

                Console.WriteLine(("large:"&b) 

            Else 

                Console.WriteLine(("large:"&c) 

            End If 

 End If 

Select....Case Statement 

The Select Case statement executes one of several groups of statements 

depending on the value of an expression. 

Select case Variable/Expression 

Case 1 

 Statement 

Case 2 

 Statement 

Case 3 to 8 

 Statement 

Case Is>8 

 Statement 

Case Else 

Statement  

End Select 

 

Example: 

        Select Case n 

            Case 1 

                Console.WriteLine(a + b) 

            Case 2 

                Console.WriteLine(a - b) 

            Case 3 

                Console.WriteLine(a * b) 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

30 
 

            Case 4 

                Console.WriteLine(a / b) 

            Case 5 

                Console.WriteLine(a \ b) 

            Case 6 

                Console.WriteLine(a Mod b) 

            Case Else 

                Console.WriteLine("Invalid selection") 

        End Select 

Looping control statement 

If we want to execute statements many times then use following looping control 

statements. 

1. For loop 

2. While loop 

For Loop 

For loop is popular and simplest loop. It executes loop statements for given 

number of loop iterations.  

Syntax: 

For index=start to end  step n 

[statements] 

Exit For   'to comes out loop before end 

Next index 

Here step n  is used to increase / decrease by n number 

  

Example1:   

For i=1 to 5 

Console.Writeline(i) 

Next  

Output: 1 2 3 4 5  

Example2:   

For i=5 to 1 step -1 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

31 
 

Console.Writeline(i) 

Next  

Output: 5 4 3 2 1  

While loop 

While loop executes its statements until given conditions remains true. 

Syntax:  

While condition 

[statements] 

End While  

Example:  

While  n<10 

Console.Writeline(n) 

n=n+1 

End While  

 

Msgbox & Inputbox 

We can display and read any data using dialog box. Such dialog box appear at 

run time when MsgBox and InputBox statement executes. 

MsgBox: This is used to display any message along with variable’s value on 

dialogbox. 

Syntax: 

 MsgBox("Message") 

InputBox: This is used to read any value in string form from keyboard that can 

be assign to variable using dialog box. 

Syntax: 

  Dim var as String=InputBox("Input any text") 

Example: 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

32 
 

Module Module1 

    Sub main() 

        Dim a As Integer 

        Dim val As String 

        val = InputBox("Input Integer Value") 

        a = CInt(val) 

        MsgBox("You Input:" & a) 

    End Sub 

End Module 

 

Output: 
 

 
  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

33 
 

UNIT-IV 

Object Oriented Programming:  

VB.NET is an object oriented programming language because this language 

exist all the features of OOPs. There are following- 

1. Class & Object 

2. Data abstraction & Data Encapsulation 

3. Inheritance 

4. Polymorphism 

Classes & Objects 

Class is the descriptions of object whereas object is instance of class. Class can 

be consider as user defined data type that consist using data members and 

methods whereas object is the variable of the class that can used data and 

methods of the class. 

Syntax for class: 

 Class class-name 

  <data member> 

  <subroutines> 

  <functions> 

  <properties> 

  <event handlers> 

 End Class 

Syntax for Object- 

 Dim obj-name As New class-name() 

 Or 

 Dim obj-name As class-name 

 Obj-name=New class-name() 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

34 
 

Syntax for accessing members of class- (use . operator) 

 Obj-name.member 

Example of class and object- 

    Class A 

        Private x As Integer 

        Public Sub SR(ByVal a As Integer) 

            x = a 

        End Sub 

 

        Public Function Fun() As Integer 

            Return x 

        End Function 

    End Class 

 

    Sub main() 

        Dim ob As A = New A() 

        ob.SR(2) 

        Dim var As Integer = ob.Fun() 

        Console.WriteLine(var) 

    End Sub 

 

Output: 2 

 

In this program  A is class have x is data member, SR() is subroutine and Fun() 

is function. ob is object and this object access class member using . (dot) 

operator.  
 

Constructor & Destructor: 

Constructor is a method of the class that automatically called when a new object 

is created into memory. In VB.NET constructor is defined using New() 

Keyword. We can pass arguments to constructor while object defined with 

class. It can be defined more than one times in a class but each one must be 

different on the basis of passing arguments to the construct (constructor 

overloading). 

In contrast destructor is also a method of the class that also automatically when 

an existing object of the class is removed from memory. In VB.NET destructor 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

35 
 

is defined using finalized() method. We can not passed arguments to the 

destructor and we can defined only one destructor in one class. 

Example: 

    Class A 

        Private a As Integer 

        Private b As Integer 

        Public Sub New() 

            a = 10 

            b = 20 

        End Sub 

        Public Sub New(ByVal x As Integer) 

            a = x 

            b = 20 

        End Sub 

        Public Sub New(ByVal x As Integer, ByVal y As Integer) 

            a = x 

            b = y 

        End Sub 

        Protected Overrides Sub finalize() 

            Console.WriteLine("Object removed") 

            Beep() 

            Console.Read() 

        End Sub 

 

        Public Sub show() 

            Console.WriteLine(a & "," & b) 

        End Sub 

    End Class 

    Sub main() 

        Dim ob1 As A = New A() 

        Dim ob2 As A = New A(55) 

        Dim ob3 As A = New A(11, 22) 

 

        ob1.show() 

        ob2.show() 

        ob3.show() 

 

        Console.Read() 

    End Sub 
 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

36 
 

Output: 

10, 20 

55,20 

11,22 

Object removed 

Object removed 

Object removed 

 

In this example, A is class that defined three constructors and one destructor. 

When object of class creates with no argument then constructor of no arguments 

will be called. 

 

Inheritance: 

An ability to acquire traits of base class into derived class called inheritance. In 

VB.NET inheritance is possible by Inherits keyword to access base class 

members in derived class. 

Syntax: 

Class derived-class 

 Inherits base-class 

End Class 

Example: 

    Class B 

        Private x As Integer 

        Protected y As Integer 

        Public z As Integer 

        Public Sub SR1(ByVal a As Integer) 

            x = a 

        End Sub 

 

        Public Function Fun1() As Integer 

            Return x 

        End Function 

 

    End Class 

 

    Class D 

        Inherits B   'Creates Inheritance 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

37 
 

Public Sub SR2(ByVal a As Integer) 

            y = a 

        End Sub 

 

        Public Function Fun2() As Integer 

            Return y 

        End Function 

 

    End Class 

 

    Sub main() 

        Dim od As D = New D() 

 od.SR1(10) 

 od.SR2(20) 

 od.z=30 

 

         Console.WriteLine( od.fun1() ) 

         Console.WriteLine( od.fun2() ) 

         Console.WriteLine( od.z ) 

 

    End Sub 

End Module 
 

Output: 

10 

20 

30 
 

In this example, B is base class that define three data members x, y and z. we 

can not directly access Private x in derived. We can access protected y into 

derived class and can be accessed in to any where in the program even out of 

base, derived class.  

Constructor in case of inheritance – 

When Base class & Derived class both have constructors, in that case first of all 

constructor of base class will be called after then constructor of derived class 

when object of derived class creates into memory. 

Example: 

Class B 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

38 
 

        Public Sub New() 

            Console.WriteLine("Base  Class Constructor") 

        End Sub 

End Class 

 

 Class D 

        Inherits B 

        Public Sub New() 

            Console.WriteLine("Derived  Class Constructor ") 

        End Sub 

End Class 

 

 Sub main() 

        Dim od As D = New D() 

 End Sub 

Output:  

Base  Class Constructor 

Derived  Class Constructor 
 
 

Access Specifiers: 

Access specifier means those keywords of VB.NET that define with members 

of the class and specify the nature of members that there will be accessible 

within same class where they are define or also accessible to outside that class.  

There are following three important access specifires defined VB.NET. 

1. Private 

2. Protected 

3. Public 

They are used with data and methods as following 

    Class B 

        Private x As Integer 

        Protected y As Integer 

        Public z As Integer 

        Public Sub SR1(ByVal a As Integer) 

            x = a 

        End Sub 

 

        Public Function Fun1() As Integer 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

39 
 

            Return x 

        End Function 

 

    End Class 

  

1. Private: Members are accessible only inside the class where they are 

defined using private keyword. In this example, Private x is only 

accessible in to Class B. 

2. Protected: Members are accessible to inside the class where they are 

defined using protected keyword as well as only inside the derived class 

of it. In this example, Protected y is accessible in to Class B and its 

derived class too. 

3. Public: Members are accessible to inside the class where they are defined 

using public keyword, as well as inside to all its derived and any where in 

the program. In this example, Public z is also accessible outside the Class 

B. 

 

Interfaces 

Interface is one type of class in which methods are only declared but not defined 

with code. Methods of interface are defined with code inside the class that will 

implement the interface. It is one type of interface where interface consider as 

base and implemented class will considered derived. 

A class that will implement interface, it is compulsory to define method 

declared in interface.  

In VB.NET, interface is defined using Interface keyword and implement on 

class using Implement keyword. 

Example: 

 Interface I 

        Sub show()     'method declared 

 End Interface 

 

 Class A 

        Implements I 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

40 
 

 

        Public Sub show() Implements I.show 

            Console.WriteLine("Interface Method defined in class") 

        End Sub 

 End Class 

 

 Sub main() 

        Dim ob As New A 

        ob.show() 

End Sub 

 

Output: 

Interface Method defined in class 

In this program  I  is an interface and it is implement in class A using 

Implements keyword. When we define method in class then it is compulsory to 

link with interface name as Implements I.show.  

 

Polymorphism: 

When there are more than one methods having the same name and it is possible 

to call all methods then it is called as polymorphism. 

Polymorphism is classified into following two categories. 

1. Compile time polymorphism 

2. Runtime polymorphism 

Compile time polymorphism (Method overloading): In such polymorphism, all 

methods having same name but they are differentiate by arguments. In 

VB.NET, if more than one subroutines or functions are defined in class or 

module and each one are different on the basis of arguments. When we call then 

a particular subroutine or function is identified by matching passing arguments 

and arguments specified in subroutine or function. 

 Example: 

  Module module1 

       Sub show() 

            Console.WriteLine("hello") 

        End Sub 

    End Class 

    Sub show(ByVal a As Integer) 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

41 
 

            Console.WriteLine("a") 

     End Sub 

     

    Sub main() 

 Show() 

 Show(10) 

    End Sub 

End Module 

 

Output:  

hello 

10 

In this example, subroutine show() is defined two times. One with one argument 

and another without argument. They will be link at compile time with calling 

subroutines. This is also called method overloading.  

Runtime polymorphism: When more than one methods having same name as 

well as all methods are defined with similar arguments then linking of method 

calling will take place at run time. It is called runtime polymorphism. 

In VB.NET, to make runtime polymorphism Overridable  & Overrides 

keywords are used.  Overridable keyword is used method of base class & 

Overrides keyword is used with method of derived class.  

When object of base class call method then obviously method of base class will 

be called, but if object of derived class hold reference of object class then 

method of derived class will be called. 

Example: 

    Public Class Base 

        Public Overridable Sub show() 

            Console.WriteLine("Base show Method") 

        End Sub 

    End Class 

 

    Public Class Derived 

        Inherits Base 

        Public Overrides Sub show() 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

42 
 

            Console.WriteLine("Derived show method") 

        End Sub 

    End Class 

 

    Sub poly(ByVal ob As Base) ' gets base or derived object 

        ob.show()   'call show method of base or derived 

    End Sub 

 

    Sub main() 

        Dim ob As New Base 

        Dim od As New Derived 

        poly(ob)    'pass base object to base variable  

        poly(od)    'pass derived object to base variable 

        Console.Read() 

    End Sub 

 

Output: 

 

 
 

In this example, show() method is defined in base class using Overridable and 

also defined in derived class using Overrides. We also define a method poly() 

with object reference of base class and this method called show() method of 

base class or derived class.  

When poly() method is called by passing object of base class then show() of 

base class will be called. If we pass object of derived class then show() method 

of derived class will be called. In this way, runtime polymorphism are managed. 

MyClass v/s MyBase Keyword 

MyClass: When method of base class is defined using Overridable keyword 

and same name of method is also defined in derived class using Overrides 

keyword. In this situation if object of derived class will be called method of 

derived class, but if want to call method of base class then we have to use 

MyClass keyword. 

For Example: 

Public Class Base 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

43 
 

        Public Overridable Sub show() 

            Console.WriteLine("Base show Method") 

        End Sub 

 

        Public Sub callshow() 

            show() 

        End Sub 

        Public Sub callshow1() 

            MyClass.show() 

        End Sub 

 End Class 

 

 Public Class Derived 

        Inherits Base 

        Public Overrides Sub show() 

            Console.WriteLine("Derived show method") 

      End Sub 

 End Class 

 Sub main() 

        Dim od As New Derived 

        od.callshow()  'derived show 

        od.callshow1() 'base show  

 

 End Sub 

 

Output: 

 

 
 

In this example, we have to defined show() methods in both class. We have also 

to defined a method callshow() in base class that will call show() method. When 

object of derived class call callshow() method then by default this method call 

show() method of derived class. But we want to call method of base class. In 

this situation we have to use MyClass keyword to call show() of base class i.e. 

MyClass.show() . 

MyBase:  

When base class and derived class both have constructors with arguments and 

we have to pass arguments to base class constructor from derived class 

constructor then we will use MyBase keword in derived class constructor. 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

44 
 

Example: 

 Class Base 

        Private a As Integer 

        Public Sub New(ByVal x As Integer) 

            a = x 

            Console.WriteLine(“Base value{0}”, a) 

        End Sub 

    End Class 

 

 Class Derived 

        Inherits Base 

        Private b As Integer 

        Public Sub New(ByVal x As Integer, ByVal y As Integer) 

            MyBase.New(x)  'passing argument to base class constructor 

            b = y 

            Console.WriteLine("Derived value{0}", b) 

        End Sub 

    End Class 

 

    Sub main() 

        Dim od As Derived = New Derived(10, 20) 

    End Sub 

 

Output: 

Base value10 

Derived value20 

In this example, we have to pass arguments to base class constructor from 

derived using MyBase. 

Exception Handling: Using Try, Catch, Finally, Throw Keywords.  

Exceptions are just runtime errors. Exceptions occur when a program is running 

(as opposed to syntax errors, which will prevent VB .NET from running your 

program at all). You can trap such exceptions and recover from them using Try, 

Catch, Finally, Throw Keywords rather than letting them bring your program to 

an inglorious end.  

Using Try, Catch, Finally Keywords 

Structured exception handling is based on a particular statement, the 

Try…Catch…Finally statement, which is divided into a Try block, optional 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

45 
 

Catch blocks, and an optional Finally block. The Try block contains code where 

exceptions can occur, the Catch block contains code to handle the exceptions 

that occur. If an exception occurs in the Try block, the code throws the 

exception— actually an object based on the Visual Basic Exception class—so it 

can be caught and handled by the appropriate Catch statement. After the rest of 

the statement finishes, execution is always passed to the Finally block, if there 

is one. 

Example of Exception Handling used Try, Catch and Finally keywords 

Sub main() 

        Try 

            Dim a, b, c As Integer 

            Console.WriteLine("Input two number:") 

            a = CInt(Console.ReadLine()) 

            b = CInt(Console.ReadLine()) 

            c = a / b 

            Console.WriteLine(c) 

        Catch ex As Exception 

            Console.WriteLine("{0}:Error", ex.Message) 

        Finally 

            Console.WriteLine("Execution code completed") 

        End Try 

        Console.Read() 

    End Sub 

Output: 

 

 
 

Throw Keywords 

You can throw an exception using the Throw keyword to catch even exception 

made or not. 

Example of Throw keyword 

    Sub main() 

        Try 

            Throw Err.GetException 

        Catch ex As Exception 

            Console.WriteLine("{0}:Error", ex.Message) 

        End Try 

        Console.Read() 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

46 
 

    End Sub 

 
 

Output: 

 

 
 

Graphics Handling: Using Graphics & Pen classes for drawing colors and 

figures.  

The graphics handling in Visual Basic.NET is based on GDI+ (GDI stands for 

Graphics Device Interface). A graphics device interface such as GDI+ allows 

you to display graphics on a screen-or a printer-without having to handle the 

details of a specific display device. 

In Visual Basic 2D graphics, the drawing origin (0, 0) is at the upper left of the 

drawing surface; the positive X axis extends to the right and the positive Y axis 

downward. 

Graphics class 

Graphics class gives us a drawing surface that we can work with instead. The 

actual methods we'll be using here, such as DrawRectangle, FillRectangle, 

DrawEllipse and FillEllipse, are all methods of the Graphics class. 

Pen class 

GDI+ also supports a Pen class that specifies just how you draw figures. In 

particular, you can customize pens, specifying line color, line width, and line 

style. When you draw a figure-such as an ellipse-you must create and provide a 

Pen object that GDI+ will use to draw that ellipse.  

Brush class 

Similarly, GDI+ supports a Brush class that you can use to fill the figures 

you've drawn in, as when you want to fill a rectangle or polygon with color. 

Example: 

 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

47 
 

 

    

  Private Sub EmptyRectangleToolStripMenuItem_Click() 

        Dim g As Graphics = Me.CreateGraphics() 

        Dim r As New Rectangle(10, 50, 500, 300) 

        g.DrawRectangle(Pens.Brown, r) 

     End Sub 

 

     Private Sub FilledRectangleToolStripMenuItem_Click() 

        Dim g As Graphics = Me.CreateGraphics() 

        Dim f As New RectangleF(15, 55, 490, 290) 

        g.FillRectangle(Brushes.Bisque, f) 

     End Sub 

 

     Private Sub EmptyEllipseToolStripMenuItem_Click()  

        Dim g As Graphics = Me.CreateGraphics() 

        Dim r As New Rectangle(10, 50, 500, 300) 

        g.DrawEllipse(Pens.Blue, r) 

     End Sub 

     Private Sub FilledEllipseToolStripMenuItem_Click()  

        Dim g As Graphics = Me.CreateGraphics() 

        Dim f As New RectangleF(15, 55, 490, 290) 

        g.FillEllipse(Brushes.BurlyWood, f) 

     End Sub 

     Private Sub LineToolStripMenuItem_Click()  

        Dim g As Graphics = Me.CreateGraphics() 

        g.DrawLine(Pens.DarkGoldenrod, 10, 50, 510, 350) 

     End Sub 

 

File Handling: Opening or creating file, Writing & Reading text 

 

Imports System.io 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

48 
 

Public Class Form01FileHandling 

Private Sub ButtonWrite_Click() 

Dim fw As FileStream = New FileStream("c:\xyz.txt", FileMode.Create,  

        FileAccess.Write) 

       Dim w As New StreamWriter(fw) 

       w.WriteLine(TextBox1.Text) 

       w.Flush() 

       w.Close() 

End Sub 

Private Sub ButtonRead_Click()  

        Dim fr As FileStream = New FileStream("c:\xyz.txt", FileMode.Open,  

FileAccess.Read

) 

        Dim r As New StreamReader(fr) 

        TextBox2.Text = r.ReadToEnd() 

        r.Close() 

End Sub 

End Class 

 

  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

49 
 

UNIT-3 

Window form controls- 

1. Textbox: Using this control we can input simple text or password 

characters. 

Important Properties: Text, ReadOnly, PasswordChar, Multiline, 

MaxLength, TabIndex 

Important Event: Text_Changed 

Accessing data in code:  TextBox1.Text 

2. Rich Textbox: This control is used to input text in one or more lines and 

paragraphs. 

Important Properties: Text, ScrollBar, Maxlength, RaedOnly, TabIndex 

Important Event: Text_Changed 

Accessing data in code:  RichTextBox1.Text 

3. Label: This control is used to display ant text on the form. 

Important Properties: Text, Autosize, BorderStyle, TextAlign 

Accessing data in code:  Label1.Text 

4. Link Label: This control provides a facility to set hyperlink on given 

label so that we can open any web page on internet by click on this 

control with control key. 

Important Properties: Text, Autosize, BorderS 

Accessing data in code:  RichTextBox1.Text 

5. Button: If want to execute code to perform any operation then code are 

written inside the click event of button contol. 

6. Checkbox: If we have many options and can select one or more of them 

then in that case checkboxes are used. 

7. Radio Button: If we have many options but select any one of them then 

in that case radio buttons are used. 

8. Panel: This control provides a frame without any label. This is used to 

place controls inside them. One form can be sub divided into many parts 

using this control. 

9. GroupBox: This control provides a frame with a label name and it can be 

used to place a set of vb controls like radio buttons and checkbox of same 

group so that we can choose any one options among many radio button 

controls. 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

50 
 

10. Picture Box / Image: Using this control we can display any picture / 

image on form and set its width and height. 

11. Listbox: This control can contain a number of items in list format along 

with scrolls. Through this we can select one or more items. 

12. Combo box: This control can contain a list of items but only one will be 

shown on front. If arrow button is press of this control then a complete 

list will be appear along with scroll bars. We can select any one item 

from combo box. 

13. Check list box: It contain a list of items along with check boxes so that 

we can select or unselect items from list for further operations. 

14. Scrollbar: If any contents is not fit into given frame then using scroll bar 

we can view whole part of contents. 

15. Timer: Using this control we can execute a set of code after given time 

interval that set using timer control. 

16. Menu: A list of commands can be shown on the top of form. It creates a 

menu and sub menu list. We can write code behind the click event of 

every menu commands. 

17. Context menu: A number of commands can be display on form when 

user right click of mouse button. We can also write code behind of every 

command’s click event. 

18. List View: Using this control we can display items in list format. 

19. Tree view: Using this control we can display a number of items in tree 

like format. 

20. Toolbar: It is situated at the top of the form. It is used to shows a number 

of operation list in iconic form that has to be most recent usable in 

application. 

21. Status bar: It is situated at the bottom of form when added from toolbox. 

It can be used to show current status of the running form.   

Dialog boxes 

Dialog box is a small window that contains all necessary options to perform 

specific task. User need not to design them. In VB.NET there are following 

dialog boxes can be used to perform various operations such as browsing file 

system to select files, choosing colors and printing. 

1. Open Dialog box 

2. Save dialog box 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

51 
 

3. Color dialog box 

4. Font dialog box 

5. Print dialog box 

All dialog boxes have following common method to show dialog box at run 

time. 

ShowDialog(): If it is true then dialog box will appear on request any 

command. 

When any dialog box place on Window form then it will placed on bottom tray 

and apply on window form using code. 

Working with dialog box: 

Step1: Design a form as following to save, open file, set text font, color and 

print. 

 

Step2: Using toolbox place all dialog boxes on this window form.  

Step3: Double click on each button and write required dialog box code to open 

at run time.   

1. OpenDialogBox: Using this dialog box we can select any required file 

using browser. After selecting file this dialog box returns path of the file 

with filename when we click on Open button of dialog box. 

It look like this- 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

52 
 

 

This dialog box appear when we write following code on button click. 

If OpenFileDialog1.ShowDialog() <> Windows.Forms.DialogResult.Cancel Then 

Dim fr As FileStream = New FileStream(OpenFileDialog1.FileName,  

FileMode.Open, FileAccess.Read) 

      Dim r As New StreamReader(fr) 

      TextBox1.Text = r.ReadToEnd() 

      r.Close() 

End If 

These codes shows open dialog box and read content of file into textbox from 

browsing location choose from this dialog box. 

2.  SaveDialogBox: Using this dialog box we can select a location where we 

want to save file with the help of browser. When we click on Save button 

of dialog box then it returns path of file with new file name.  

It look like- 

 
This dialog box appear when we write following code on save button 

click. 

If SaveFileDialog1.ShowDialog() <> Windows.Forms.DialogResult.Cancel Then 

Dim fw As FileStream = New FileStream(SaveFileDialog1.FileName, 

FileMode.Append, FileAccess.Write) 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

53 
 

Dim w As New StreamWriter(fw) 

w.WriteLine(TextBox1.Text) 

w.Flush() 

w.Close() 

End If 

This code open save dialog box and write textbox content into a file where 

location return by this dialog box. 

3. ColorDialogBox: This dialog box provides a color palette so that we can 

choose any color. When OK button press then it gives color value. 

It look like- 

 

This dialog box appears when we write following code on color button 

click. 

If ColorDialog1.ShowDialog() <> Windows.Forms.DialogResult.Cancel Then 

            TextBox1.BackColor = ColorDialog1.Color 

End If 

This code open color dialog box and change back ground color of  textbox that 

return by this dialog box. 

4. FontDialogBox: This dialog box provides all font related setting like font 

types, font names and font setting. After setting font when we click OK 

button of dialogbox then it returns all font related value.  

It look like- 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

54 
 

 

This dialog box appears when we write following code on font button 

click. 

If FontDialog1.ShowDialog() <> Windows.Forms.DialogResult.Cancel Then 

            TextBox1.Font = FontDialog1.Font 

End If 

This code open color dialog box and change back ground color of textbox that 

return by this dialog box. 

5. PrintDialogBox: It is used to print anything of application. It look like 

 

 

 

This dialog box appears when we write following code on print button 

click. 

PrintDialog1.ShowDialog(). 

  



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

55 
 

UNIT-5 

Working with database: 

Step1: Open Window application project of VB.NET language. 

Step2: Add Sql-Server Database file(college.dbf) using solution explorer by 

Add New Item. 

Step3: Using Server Explore, select database file and create a table(student) and 

add any three fields(id-int, name-varchar,dob-datetime). 

Step4: Design a window form as following. 

 

Step5: Import following namespaces at the top of code behind of the form 

Imports System.Data.SqlClient 

Imports System.Data 

Step6: Write following code in the click event of save, update and delete 

buttons to execute insert, update and delete commands respectively into 

database. (SqlConnection, SqlCommand class) 

' establish connection code 

Dim con As New SqlConnection("connection string") 

con.Open() 

 

'execute insert/update/delete command 

Dim q As String = "insert /update /delete query" 

Dim cmd As New SqlCommand(q, con) 

cmd.ExecuteNonQuery() 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

56 
 

Step7: Write following code in the click event of Search button to find any one 

record into database. (SqlConnection, SqlCommand and SqlDataReader 

class) 

    
 ' establish connection code 
 Dim con As New SqlConnection("connection string") 

 con.Open() 

 

 'Access record using data reader 

 Dim q As String = "select command with where clause" 

 Dim cmd As New SqlCommand(q, con) 

 Dim dr As SqlDataReader = cmd.ExecuteReader 

 If (dr.Read) Then 

     TextBoxName.Text = dr(1).ToString 

     TextBoxDOB.Text = dr(2).ToString 

 End If 

Step8: Write following code in the click event of Show All button to find any 

one record into database. (SqlConnection, SqlCommand, SqlDataAdapter, 

Dataset class and DataGridView Control) 

' establish connection code 

Dim con As New SqlConnection("connection string") 

con.Open() 

 

'Access all records using data adapter and dataset 

Dim q As String = "select command " 

Dim cmd As New SqlCommand(q, con) 

Dim da As New SqlDataAdapter 

Dim ds As New DataSet 

da.Fill(ds) 

'Show records within dataset into GridView controls 

DataGridView1.DataSource = ds.Tables(0) 

Crystal Report 

It is third party software of vb.net to prepare a report of database records so that 

they can be printed on paper. To work with crystal report follow these steps. 

Step1: Add dataset file (Ex. Dataset1.xsd) using add new item option from 

solution explorer and assign required database table to dataset. 

Step2: Add Crystal Report file(Ex. CrystalReport1.rpt) using add new item 

option from solution explorer. 

Step3: Select data source(Ex. Dataset1.xsd) of crystal report and design crystal 

report by drag-drop fields in detail section. 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

57 
 

  

Step4: From toolbox add CrystalReportViewer control on a new form to view 

report and print on paper. 

  

Step5: Write following code in click event of a button that can generate report. 

' establish connection code 

Dim con As New SqlConnection("connection string") 

con.Open() 

 

'Access all records using data adapter and dataset 

Dim q As String = "select command " 

Dim cmd As New SqlCommand(q, con) 

Dim da As New SqlDataAdapter 

Dim ds As New DataSet 

da.Fill(ds) 

 

'Load crystal report 

Dim cr As New ReportDocument 

cr.Load("path of CrystalReport1.rpt") 



VB.NET 

 

Prepared by: Mr. Lokesh Rathore 

58 
 

cr.SetDataSource(ds.Tables(0)) 

'Show report viewer form 

Dim frm3 As New Form3 

frm3.CrystalReportViewer1.ReportSource = cr 

frm3.Show() 

At run time crystal report of student record will be generated when button is 

clicked. 

 

 

End of Unit-5 

 

 

 


